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Abstract—Current imaging experiments at synchrotron beam
lines often lack a real-time data assessment. X-ray imaging
cameras installed at synchrotron facilities like ANKA provide
millions of pixels, each with a resolution of 12 bits or more,
and take up to several thousand frames per second. A given
experiment can produce data sets of multiple gigabytes in a
few seconds. Up to now the data is stored in local memory,
transferred to mass storage, and then processed and analyzed off-
line. The data quality and thus the success of the experiment, can,
therefore, only be judged with a substantial delay, which makes
an immediate monitoring of the results impossible. To optimize
the usage of the micro-tomography beam-line at ANKA we have
ported the reconstruction software to modern graphic adapters
which offer an enormous amount of calculation power. We were
able to reduce the reconstruction time from multiple hours to just
a few minutes with a sample dataset of 20 GB. Using the new
reconstruction software it is possible to provide a near real-time
visualization and significantly reduce the time needed for the first
evaluation of the reconstructed sample. The main paradigm of
our approach is 100% utilization of all system resources. The
compute intensive parts are offloaded to the GPU. While the
GPU is reconstructing one slice, the CPUs are used to prepare
the next one. A special attention is devoted to minimize data
transfers between the host and GPU memory and to execute I/O
operations in parallel with the computations. It could be shown
that for our application not the computational part but the data
transfers are now limiting the speed of the reconstruction. Several
changes in the architecture of the DAQ system are proposed to
overcome this second bottleneck. The article will introduce the
system architecture, describe the hardware platform in details,
and analyze performance gains during the first half year of
operation.

I. INTRODUCTION

DRIVEN by substantial developments in digital detector

technology there is presently a tremendous progress

going on in X-ray technology offering broad applications in

the fields of medical diagnostics, homeland security, non-

destructive testing, materials research and others. X-ray imag-

ing permits spatially resolved visualization of the 2D and

3D structures in materials and organisms which is crucial

for the understanding of their properties. Further it allows

defect recognition in devices in a broad resolution range

from the macro down to the nano-scale. Additional resolution

in the time domain gives insight in the temporal structure

evolution and thus access to dynamics of processes allowing
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to understand functionality of devices and organisms and to

optimize technological processes [1], [2].
In recent years, synchrotron tomography has seen a tremen-

dous decrease of total acquisition time [3]. Based on available

photon flux densities at modern synchrotron sources ultra-fast

X-ray imaging could enable investigation of the dynamics of

technological and biological processes with a time scale down

to the milliseconds range in the 3D. Using modern CMOS

based detectors it is possible to reach up to several thousand

frames per second. For example, frame rates of 5000 images

per second were achieved using a filtered white beam from

ESRF’s ID19 wiggler source [4]. Using a larger effective

pixel size the frame rates of 40000 images per second were

reported [5]. As a result of improved image acquisition, a given

experiment can produce data sets of multiple gigabytes in a

few seconds. There is a major challenge to process these data

in reasonable amount of time facilitating on-line reconstruction

and fast feedback.
Two main approaches are used at the moment to handle the

huge data-sets produced at the tomographic setups.

• At TopoTomo beam-line of ANKA (synchrotron facility

at KIT [5]) up to now the data was stored in local

memory, transferred to mass storage, and then processed

and analyzed off-line. The data quality and thus the

success of the experiment can only be judged with a

substantial delay, which makes an immediate monitoring

of the results impossible.

• Second alternative is supercomputer-based processing,

expensive in terms of money and power consumption. For

example, a pipelined data acquisition system combining a

fast detector system, high speed data networks, and mas-

sively parallel computers was employed at synchrotron at

Aragonne National Laboratory to acquire and reconstruct

a full tomogram in tens of minutes [3].

Instead we decided to use computation power of modern

graphic adapters provided by NVIDIA and AMD. Including

hundreds of simple processors used to transform vertexes in

3D space they offer a way to speed up the process of more than

one order of magnitude at low cost and with good scalability. A

peak performance of fastest graphic cards exceeds one teraflop

(for single precision numbers). Top gaming desktops include

up to four of such cards and, thus, producing about 5 teraflops

of computational power. Compared to 100 gigaflops provided

by commonly used servers, this gives a potential speedup of

50 times [6], [7].
To provide this enormous computational power to devel-

opers NVIDIA released a CUDA (Common Unified Device

Architecture [8]) toolkit. It extends C language with few
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syntactical constructs used for GPU programming. CUDA

exploits data parallelism: basically the architecture allows to

execute a sequence of mathematical operations, so called ker-

nels, simultaneously over a multi-dimensional set of data. API

includes functions to transfer the data from the system memory

to GPU memory, execute kernels to process these data, and

transfer the results back to the system memory. For developer

convenience NVIDIA and community have released a number

of libraries implementing many standard algorithms. NVIDIA

CUDA SDK includes cuFFT - an interface to perform multi-

dimensional FFT (Fast Fourier Transformations), cuBLAS - a

BLAS (Basic Linear Algebra Subprograms) implementation,

and cudpp - a collection of parallel reduction algorithms. There

are community implementations of LAPACK (Linear Algebra

PACKage) and quantity of computer vision algorithms [9],

[10], [11].

In addition to vendor-dependent programming toolkits, like

CUDA, Khronos Group have introduced OpenCL (Open Com-

puting Language [12]), a new industry standard for par-

allel programming. The architecture of OpenCL is similar

to CUDA, but, unlike the proprietary NVIDIA technology,

it allows to execute developed application on both AMD

and NVIDIA GPUs as well as on general-purpose multi-

core/multiprocessor CPUs.

FBP (Filtered Back Projection) is a standard method to

reconstruct 3D image of object from multiplicity of tomo-

graphic projections [13]. PyHST (High Speed Tomography

in Python [14]) is a fast implementation of filtered back-

projection developed at ESRF (European Synchrotron Radi-

ation Facility) and used currently at synchrotrons at ESRF

and KIT [5]. While it uses heavily optimized C-code for

performance intensive parts of algorithm, the processing of

typical data set with nowadays Xeon servers is still requiring

about one hour of computations. In order to increase speed

of processing and achieve a near real-time performance we

accelerated reconstruction by offloading most of the computa-

tions to GPU with the help of CUDA toolkit. The optimized

version of PyHST is able to reconstruct a typical 3D image

(3 gigavoxel image is reconstructed from 2000 projections) in

only 40 seconds using a GPU server equipped with 4 graphic

cards, I/O time excluded. It is approximately 30 times faster

compared to 8-core Xeon server used before.

There are a few other research projects aiming to GPU-

assisted tomographic reconstruction. The group from univer-

sity of Antwerp has assembled a GPU server with 7 NVIDIA

GTX 295 cards reaching 12 TFlops of theoretical peak perfor-

mance. The presented benchmark show 35 times speedup com-

pared with Intel Core i7-940 [15]. RapidCT is another project

developing GPU-assisted tomographic software. The presented

results indicating 20 times performance increase [16]. As well

there are earlier implementations of filtered back projection

developed using shader language [17], [18]. Unfortunately, no

project is distributing the developed software. On the other

hand PyHST with our optimizations is available under GNU

Public License from our web site [19].

The rest of article is organized as follows. Second section

describes the filtered back-projection algorithm and provides

an estimation of computation complexity. In third section the

details about PyHST and our optimizations are presented. The

performance evaluation, a discussion of I/O bottleneck, and a

review of available hardware platforms are provided in fifth

section. Finally, conclusion summarizes presented information.

II. IMAGING AT SYNCHROTRON LIGHT SOURCES

Fundamentally, the imaging at synchrotron light sources

is working as follows. The sample is placed at horizontal

platform and evenly rotated in front of a pixel detector. The

parallel X-rays are penetrating the sample and the pixel de-

tector registers series of parallel 2D projections of the sample

density at different angles. These projections along with the

coordinates of the rotation axis and the angle between slices

are the input data for PyHST. To reconstruct a 3D image from

projection PyHST employs a FBP algorithm. All projections

are replicated in 3D space across the X-rays direction and

integrated, see Fig. 1. Since the sample is rotating round the

strictly vertical axis, the sample can be seen as a sequence of

horizontal slices which can be reconstructed separately. If the

center of rotation is located at a center of coordinate system

then to find a value of point with coordinates (x, y) in slice z, it

is necessary to compute the following sum over all projections:∑P

p=1
Ip(xcos(pα) − ysin(pα), z) where P is a number of

projections, α is an angle between projections, and Ip is a p-

th projection. Since the projections are digital images of finite

resolutions, the linear interpolation is performed to get density

value at position xcos(pα) − ysin(pα) [13], [20].

Fig. 1. Image reconstruction using back-projection algorithm. The sample
is evenly rotating and pixel detectors registers series of parallel projections at
different angles (left). All registered projections are replicated across direction
of incidence and integrated (right).

Unfortunately, described approach is yielding to blurred

results. As it can be seen from Fig. 1 besides the circular

objects in the center the reconstructed image contains faint

traces of the prolonged projections. This effect diminishes with

the number of projections, but in the standard setups is high

enough to blur details at the boundary of changing density.

To compensate the blurring effect the raw projection data is

multiplied in the Fourier domain with the ramp filter before

being back-projected. However, this approach intensifies noise

and in some case can introduce aliasing effects. To reduce

these effects other types of filters are used instead of the ramp

filter in specific cases. Fig. 2 illustrates difference between

unfiltered back projection and back projection using the ramp

filter [13], [21].



Fig. 2. A reconstructed slice of a conical plastic holder with porose
polyethylene grains. A ramp filter was used to reconstruct right image and no
filtering was performed for the left.

A. Algorithm Complexity

The source data includes S slices consisting of P projec-

tions and N bins in each projection. The reconstructed 3D

image should be composed of M voxels totally. Both the

source and the result data is stored uncompressed in a single-

precision floating point format (32 bit). If linear interpolation

is used the total number of operations required to back-project

the image is equal to 9 ∗ P ∗ M [22]. To filter a single

projection a convolution should be computed for each vertical

slice individually. Therefore, the complexity of the filtering

step consists from the computation of direct and inverse FFT

transforms of projection slices and a multiplication with the

filter in a Fourier domain. According to Bergland if the number

of elements in transformed vector (N ) is equal to power of

2, the exact number of floating point operations required to

compute FFT is N(alog2N +6), where a is between 4.03125
and 5 depending on a radix of algorithm [23]. Further, for

the simplicity reasons N(5log2N + 6) is used to estimate

computation complexity of FFT. And, then, the total number

of operations required to filter a single slice is equal to

N(10log2N + 13).

The following list summarizes the complexity estimation:

• 4 ∗ S ∗ P ∗ N bytes of data should be read from the

disk and 4 ∗ M bytes should be written back. If the

amount of system memory is not enough to completely

store the projection data and result, the data should be

processed slice by slice. In this case the data is accessed

in non-contiguous way: only a few slices are read from

each image file per iteration. Described access pattern

is significantly slower than sequential read if nowadays

magnetic hard drives are considered.

• If the GPUs are used for processing, the source data

should be transferred from the system memory to GPU

memory and the results should be transferred back to the

system memory.

• A filtering step of FBP algorithm needs S ∗ P ∗ N ∗

(10log2N + 13) floating point operations to preprocess

the source data.

• The main step needs 9 ∗P ∗M floating point operations

to accomplish the reconstruction.

III. OPTIMIZATIONS

A. PyHST

PyHST is developed using two programming languages:

Python part is responsible for various management tasks and

C code is used for performance critical parts. The Python

application loads images, extracts the slices for current itera-

tion, applies various corrections to the loaded data, prepares

the data for filtering step, and, finally, executes C-code to

reconstruct the image. Current version of PyHST supports only

an EDF (ESRF Data Format [24]) file format developed by

ESRF. However, the converters from TIFF (and other image

formats supported by ImageMagick [25]) are provided and

will be included in the next version of PyHST. The filters are

implemented using plugins. The plugin accepts a size of a filter

core and produces an array of appropriate size which would be

multiplied with input data in the Fourier domain. The angles

of projections may be given in two ways: by specifying the

declination of the first projection and the angle between any

two consequential projections or by specifying the declination

angle for all projections separately. The position of rotational

axis is specified in the reconstruction parameters and can be

corrected for each slice individually.

B. New Architecture

As a first step of optimization, the original structure of ap-

plication has been rewritten in a more object-oriented way. The

thread unsafe-code was fixed, static and global variables were

eliminated. The code was divided in several small objects: a

reconstruction code, an error handler, a thread scheduler, a task

manager, and a Python wrapper. The task manager is a main

component; it performs initialization tasks and instructs thread

scheduler to start processing of slices. The initialization tasks

include allocation of all temporary memory, configuration of

the threading pool, and precomputation of constants shared

between slices.

To allow simultaneous usage of GPU and CPU the recon-

structors are implemented through an abstract interface. The

interface defines initialization, cleanup, and process routines

which are executed by the task manager at appropriate stages.

Two implementations of the abstract interface are available

now: CPU and GPU. The original CPU version is slightly

modified to implement the routines defined by the interface.

The newly developed GPU version uses CUDA toolkit to

offload all computations to the GPU. It is described in more

details in the next subsection.

The CPU code is optimized to efficiently use available L2

cache and its structure organized in a way helping the com-

pilers with SIMD support to vectorize computations. The FFT

transformations are computed using FFTW3 (Fastest Fourier

Transformation in the West) API. This API is implemented

by several libraries including open-source FFTW and highly

optimized commercial Intel MKL (Math Kernel Library) [26],

[27].

The PyHST may run in CPU, GPU, and hybrid modes.

In the first two modes each thread in the pool is associated

with a single CPU or GPU correspondingly. The appropriate

reconstruction module and consecutive number of CPU/GPU



core are stored in the thread context. In the hybrid mode

all computational resources of the system are used. In order

to support multiple CPU and GPU devices, a simple thread

scheduler is implemented. After all initialization tasks are

carried out the scheduler simultaneously runs all threads in

the pool. The threads are requesting the next unprocessed

slice from the scheduler and run the reconstruction using the

associated module. Then, the results are written directly to

the resulting image file and the next slice is requested. When

all slices are processed, the threads are paused and the task

manager returns control to python code which could load next

portion of slices from the files or terminate execution if all

slices are already processed. The only sequential points of

execution are the request of new slices and the result write

out.

The multithreading and logging are implemented using

GLib (Gnome Library [28]). The logging module of GLib is

configured to pass all messages to python-logging and, hence,

to perform handling of all log messages from both Python and

C parts of application in a uniform way. Finally, the Python

wrapper is used to encapsulate the calls to the task manager

into the Python C interface.

To simplify compilation on various platforms, a CMake

build system is used to detect PyHST dependencies [29].

The CMake scripts are checking the availability and find

installation paths of the Python, the required Python modules,

the GLib library, FFTW3 and Intel MKL engines, the CUDA

Toolkit, etc. The FindCUDA project is used to detect libraries

and headers of CUDA Toolkit and SDK [30]. Depending on

availability of CUDA libraries, the CPU or GPU flavor of

PyHST is built. However, a CMake configuration tool allows

to force build of CPU version even if all CUDA libraries are

present. As well using the configuration tool it is possible

to select between FFTW3 and Intel MKL libraries, request a

single-threaded execution, and override the library paths.

C. GPU Implementation

Despite availability of OpenCL, the current implementation

is based on CUDA architecture. The main reason is the

maturity of technology and a rich stack of available libraries.

While OpenCL promises stable industry standard and vendor

independence, currently it strongly misses the software sup-

port. NVIDIA does not provide OpenCL version of their FFT

and BLAS libraries. The third party libraries are pretty scarce

or/and commercial. On the over hand the OpenCL and CUDA

technologies are architecturally similar. In order to translate

GPU kernels from CUDA to OpenCL only a few keywords

should be changed. The support code which is running on CPU

and scheduling GPU kernels needs only a slightly more work.

Therefore, using CUDA libraries we were able to produce a

first version in a very short time and, thanks to the similarity

of architectures, we will rapidly port it to OpenCL when the

technology is mature enough.

The back projection code is extremely simple. The projec-

tion data is stored in 2D textures. The pixels of reconstructed

slice are divided into the several groups at row boundaries.

The groups are processed sequentially in a loop. All pixels

of a single group are reconstructed by the CUDA kernel

in parallel. Within the kernel a loop over all projections is

executed. At each iteration, a projection bin corresponding

to the reconstructed pixel is calculated and texture fetch is

performed. The texture engine is configured to perform the

linear interpolation while fetching the data. In this way both

GPU multiprocessors and texture engines are used in the same

time. The technique was proposed for acceleration using SGI

RealityEngine as early as 1994 by B. Cabral [22].

To perform the filtering of source data a convolution with

the configured filter is executed. Unfortunately, the cuFFT

library does not include any optimization for performing FFT

transforms on a pure real data [31]. Another limitation of

cuFFT library is high dependency of performance and accu-

racy on a transform size. To handle last problem the projection

data is padded to the nearest power of two. To avoid wastage

of the complex computation an approach to compute two real

convolutions using a single complex one is utilized [32]. Two

projections are interleaved in GPU memory, transformed into

the Fourier space using a single complex transform, multiplied

with the filter, and transformed back. This operation results

in two filtered projections interleaved in GPU memory. The

projections are, then, copied into the texture memory and are

later used in the back-projection step of algorithm. In order

to further increase FFT performance, the described complex

projections are transformed using cuFFT batched transform.

However, not all transforms are batched together, but divided

in several equally sized blocks. This allows exploiting a feature

of few latest generations of NVIDIA cards to perform memory

transfers between system and GPU memory in parallel with

execution of computation kernels. While the current block is

transferred, the previous one is filtered using the specified

Fourier filter.

The same approach is used while transferring the recon-

structed image back to the system memory. The execution of

back-projection kernel on a group of pixels is interleaved with

memory transfers of already reconstructed pixels. In general,

this allows almost complete hiding of the transfer time within

the computation time.

IV. PERFORMANCE EVALUATION

A. Hardware and Software Setup

Four different systems were used to evaluate efficiency of

a GPU version compared to the CPU solution. A simple low

cost desktop system with a single GPU adapter.

System Desktop

Processor Intel Core Duo E6300

Motherboard Fujitsu-Siemens D3217-A

Chipset Intel Q965 chipset

PCI Express PCIe 1.1, 16 lanes, 1 GPU slot

Memory 4 GB DDR2-666 Memory

CPU 2 cores at 1.86 GHz

GPU NVIDIA GTX 280

Price 1,000$

Advanced desktop of the latest generation. Asus Rampage

III Extreme motherboard supports USB 3, latest SATA 6 Gb/s



interface, and up to four graphic cards which are connected

using PCIe x8 if all four are installed and using PCIe x16 if

only two cards are used. The system is actually equipped with

two NVIDIA GTX295 adapters.

System Advanced Desktop

Processor Intel Core i7 920

Motherboard Asus Rampage III Extreme

Chipset Intel X58 chipset

PCI Express PCIe 2.0, 36 lanes, 4 GPU slots

Memory 6 GB DDR3-1333 Memory

CPU 4 cores at 2.66 GHz

GPU 2 x NVIDIA GTX295

Price 1,800$

A GPU server from Supermicro with lots of memory,

SSD disks, and four GPU cards installed. The Supermicro

motherboard is equipped with dual Intel chipset with total

number of 72 PCIe 2.0 lanes. Therefore, all four GPU adapters

are running using full x16 bandwidth.

System Supermicro 7046GT GPU Server

Processor Dual Intel Xeon E5540

Motherboard Supermicro X8DTG-QF

Chipset Dual Intel 5520 chipset

PCI Express PCIe 2.0, 72 lanes, 4 GPU slots

Memory 96 GB DDR3-1066 Memory

CPU 8 cores at 2.53 GHz

GPU 2 x GTX480 + 2 x GTX295

Price 8,000$

And finally an NVIDIA Tesla system with Xeon-based

frontend server.

System NVIDIA Tesla S1070

Processor Dual Intel Xeon E5472

Motherboard Supermicro X7DWE

Chipset Intel 5400 chipset

PCI Express PCIe 2.0, 36 lanes

Memory 24 GB DDR2-800 Memory

CPU 8 cores at 3 GHz

GPU 4 x NVIDIA Tesla C1060

Price 12,000$

To measure a CPU performance, a dual Xeon server was

used.

System Xeon Server

Processor Dual Xeon E5472

Motherboard Supermicro X7DWE

Chipset Intel 5400 chipset

PCI Express PCIe 2.0, 36 lanes

Memory 24 GB DDR2-800 Memory

CPU 8 cores at 3 GHz

Price 5,500$

All systems were running 64 bit version of OpenSuSE 11.2

with the following software configuration:

• Linux Kernel 2.6.31.5

• GNU C Library 2.10.1

• GNU C Compiler 4.4

• Intel C Compiler 11.0.081

• Intel Math Kernel Library 10.2.1.017

• FFTW 3.3.2 (single-threaded SSE version)

• Gnome Library 2.22.1

• Python 2.6.2

B. Sample Data Set

In all tests below 2000 projections was used to reconstruct

3D image of plastic holder with porose polyethylene grains.

The image dimensions are 1691 ∗ 1331 ∗ 1311 and the projec-

tions had size of 1776∗1707 pixels. According to computations

in the section II-A 600 ∗ 109 floating point operations are

needed to filter the projection data and 53 ∗ 1012 operations

are needed for the back-projection. The size of source data is

about 24 GB and the resulting image is 11 GB.

Fig. 3. The 2000 projections (example is shown on the left side) were used
to reconstruct a 3 gigavoxel image of a porose polyethylene grains (one slice
is shown on the right side). The computation complexity of the reconstruction
is about 54 TFlop and 35 GB of data should be read and stored.

C. Compiler and FFT Library

The application performance is often dependent on the

compiler and optimization flags used [33]. Therefore, to make

a fair comparison between CPU and GPU versions an optimal

selection of C compiler and FFT library should be performed

first. As it was described in earlier sections the reconstruction

process consists of filtering and back-projection steps. The

performance of the filtering step depends mainly on the speed

of FFT library. No external libraries are used in the back-

projection and the performance depends only on the com-

piler. The Fig. 4 evaluates performance of the most popular

compilers and FFT libraries available for Linux platform.

According to the results the open-source gcc-4.4 produces

the best code for back-projection being slightly faster than

the commercial Intel C Compiler. On the other hand Intel

Math Kernel Library is significantly faster compared with the

open-source alternatives. Therefore, in the following tests the

Intel Math Kernel Library is used to perform filtering and all

sources are compiled with gcc-4.4. The following optimization

flags are used: -O3 -march=nocona -mfpmath=sse.

D. Performance Evaluation

Fig. 5 compares performance of all described systems. As

can be seen from the chart if the GPU is used for image



Fig. 4. Performance evaluation of C compilers (left) and FFT libraries (right).
The test was run on a Desktop system and a single CPU version of PyHST

was executed. The back-projection performance was measured in the compiler
benchmark and the filtering performance - in the FFT benchmark. For all
compilers the SSE vectorization was switched on. With gcc and clang the
following optimization flags were used: -O3 -march=nocona -mfpmath=sse.
With Intel C Compiler the optimization flags were: -O3 -xS. FFTW3 library
was compiled with SSE support. The performance is measured in GFlop per
second and the bigger values are corresponding to the better results.

reconstruction, even a cheap desktop is approximately 4 times

faster than expansive Xeon server. It takes only 40 seconds to

reconstruct a 3 gigavoxel image from 2000 projections using

the GPU server equipped with four graphic cards. Having

a price comparable with the Xeon server, the GPU server

performs reconstruction 30 times faster. Our implementation

scales well. According to Fig. 6 only 2.5% of maximum

possible performance is lost while Tesla system is scaled

from one to four GPUs. Fig. 7 evaluates MFlop/s per dollar

efficiency of the platforms. It is easy to see that the desktop

products are extremely good using this metric. It should be

noted that Advanced Desktop may be simply enhanced by

adding two more graphic cards.

Fig. 5. The chart evaluates the time needed to reconstruct the sample
data set using different hardware platforms. The CPU-based reconstruction
was performed for the Xeon server and only GPUs were used for all other
platforms. The smaller times correspond to the better results.

E. I/O Performance

Unfortunately, the reconstruction is only part of the task.

First, the projections should be loaded into the memory and,

in the end, the produced image should be written to the storage.

The right part of Fig. 8 shows the ratio between time spent in

the computations and I/O operations while reconstructing the

data using GPU server. The I/O takes almost 10 times more

time than reconstruction with the current version of PyHST.

According to the left part of the figure usage of SSD (Solid

State Disk) media, especially several SSD drives assembled

Fig. 6. The chart evaluates scalability of a GPU-based implementation of the
back-projection algorithm. The test was executed on NVIDIA Tesla S1070
system with 1 to 4 Tesla C1060 GPUs enabled. Deviation from the linear
scalability is shown.

Fig. 7. The chart evaluates MFlop/s per dollar efficiency of the tested hard-
ware platforms for reconstruction using back-projection algorithm (filtering is
omitted). The higher values are corresponding to the better results. The actual
performance in GFlop/s and the platform price are shown on the picture.

in a raid array, could slightly relax the problem, but still I/O

remains a major bottleneck.

While the GPU server is equipped with 96 GB of memory

and is able to store both the source data and the resulting

image directly in the system memory, the usage of RamDisk

does not significantly improve situation. In order to address the

problem, we are at the moment working on an implementation

of a direct readout from the frame grabbers. Besides, the

FPGA-based frame compression and reject probably could be

used to reduce the data rate.

F. Evaluation of NVIDIA Hardware

NVIDIA delivers multiple generations of graphic cards

in the consumer and professional versions. In this section

a performance of top graphic cards from the two latest

generations is evaluated. NVIDIA GTX295 includes two

GT200 processors. NVIDIA GTX280 is its single processor

counterpart. NVIDIA Tesla C1060 is professional solution

using GT200 architecture. It has more memory than consumer



Fig. 8. Reconstruction of the tomographic images requires reading and
writing of big amounts of image data. Using the systems with limited amount
of memory, the reading of projection data involves significant amount of
random accesses. The joint read/write throughput for different storage systems
are measured on the right chart. A WDC5000AACS SATA hard drive is
compared with Intel X25-E fast SSD disk and two such SSD disks organized
in a striping raid. The results for virtual disk stored completely in the system
memory are presented as well. The directory structure is organized using Ext3

file system in all cases. The right chart indicates the ratio of time spent in
computations and I/O. The result is obtained using a GPU server with storage
system consisting of two Intel X25-E SSD drives assembled in Raid-0.

market products but reduced clock rates. GTX480 is a current

NVIDIA flagship based on the latest GF100 architecture. All

cards besides GTX295 have only a single processor.

As it was described above, the reconstruction process can be

split in three stages: data transfer, filtering using cuFFT, and

back-projection. Fig. 9 evaluates performance of GPU cards

for all these stages individually. As can be seen from the chart

in all tests the top performance has GTX295, a dual-GPU card.

GTX480, a single-GPU card of the latest generation, is almost

reaching performance of GTX295 for the filtering step. The

transfer bandwidth of GTX480 is also quite good compared

to the single-GPU cards of older generation. However, the

back-projection performance is only insignificantly faster and

almost two times slower if compared with GTX295. Unfortu-

nately, according to Fig. 10 the back-projection step consumes

80% of reconstruction time and, as a result, for tomographic

reconstruction the GF100 architecture is only slightly better

than the older and cheaper GT200. Taking into account that

the prices of GTX295 and GTX480 are approximately same,

it is significantly more efficient to use GTX295 cards.

The professional series of Tesla cards have more memory

on board but does not provide any performance benefits for to-

mographic reconstruction. The significantly cheaper consumer

market products are performing even a bit better due a slightly

faster clock rates.

V. CONCLUSION

The modern graphic cards provides enormous amount of

computational power and can be efficiently used to speedup

scientific computations at orders of magnitude. The FBP

(Filtered Back Projection) algorithm used for tomographic re-

construction is extremely well fitting to the GPU architecture.

Basing on the source of PyHST we have developed a GPU-

based implementation of an FBP algorithm. The remodeled

architecture of PyHST allowed us to exploit the computational

resources of multiple GPU and CPU devices simultaneously.

The performance evaluation confirms the superiority of GPU

Fig. 9. The performance evaluation of NVIDIA hardware applied for tomo-
graphic reconstruction. The performance of all three stages of processing is
measured independently. The overall performance is measured in megapixels
per second, the back-projection and filtering in GFlop/s per second, and
transfer in GB per second. The transfer bandwidth in both directions is
measured jointly. Bigger results are corresponding to better results.

Fig. 10. The ratio between times required for different stages of the
reconstruction process.

version. Using a GPU server equipped with 4 graphic cards it

takes only 40 second to reconstruct a 3 gigavoxel picture from

2000 projections. This is approximately 30 times faster com-

pared to the time needed to reconstruct the same image using

8-core Xeon server costing the same money. Even under-a-

$1000-desktop equipped with a single GPU card outperforms

the Xeon server by approximately 4 times.

Significantly reducing the reconstruction time we, however,

are facing the challenge to rapidly load multiple gigabytes

of the source data into the system memory. With a standard

7200 RPM hard drive it takes only 40 seconds to reconstruct

the image, but whole 15 minutes for the disk I/O. We were

able to slightly improve situation by using multiple SSD disks



assembled in Raid-0. The I/O time was reduced to 5 minutes

only. However, this time is still inadequate to computation time

and at the moment we are working to load images directly

from the frame grabber into the system memory bypassing

the hard drive.

To build optimal hardware setup we have compared top

NVIDIA cards available on the market. Our evaluation has

indicated that for tomographic reconstruction neither the per-

formance of the new Fermi architecture nor the performance

of professional Tesla series are significantly differing from the

performance of GT200 series of consumer products. GTX295

card equipped with two GT200 processors are two times faster

than any other NVIDIA product. For the best performance, it

is possible to stack up to 4 such cards in a single system.

Supermicro supplies 7046GT family of GPU servers. The

dual-chipset motherboard from Supermicro has 72 PCIe (gen2)

lanes and supports up to 4 GPU cards at full x16 speed.

Additionally, the board has two PCIe x4 slots for the frame

grabber and raid adapter. It supports up to 192 GB of DDR3

memory in 12 slots allowing storage of both the source

projections and the resulting 3D image completely in the

system memory. The cheaper alternative is a desktop system

based on Asus Rampage III Extreme motherboard. With the

price under $2000 it is possible to reach performance of 1

TFlop/s for the back-projection. The board has 4 GPU slots

and supports 4 graphic cards at x8 speed or 2 at x16. With

48 GB of maximally supported memory it is still possible to

process most of the expected reconstructions directly in the

memory. The new SATA 3 (6 Gb/s) controller embedded in

ASUS board helps to significantly reduce I/O time if used

together with a striped raid of SSD drives.

Both CPU and GPU versions of PyHST are licensed under

GPL and available online.
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